
How Viruses Attach??

A printed copy of a virus does nothing and threatens no one. Even executable virus

code sitting on a disk does nothing. What triggers a virus to start replicating? For a

virus to do its malicious work and spread itself, it must be activated by being

executed. Fortunately for virus writers but unfortunately for the rest of us, there are

many ways to ensure that programs will be executed on a running computer.

For example, recall the SETUP program that you initiate on your computer. It may

call dozens or hundreds of other programs, some on the distribution medium, some

already residing on the computer, some in memory. If any one of these programs

contains a virus, the virus code could be activated. Let us see how. Suppose the

virus code were in a program on the distribution medium, such as a CD; when

executed, the virus could install itself on a permanent storage medium (typically, a

hard disk) and also in any and all executing programs in memory. Human

intervention is necessary to start the process; a human being puts the virus on the

distribution medium, and perhaps another initiates the execution of the program to

which the virus is attached. (It is possible for execution to occur without human

intervention, though, such as when execution is triggered by a date or the passage

of a certain amount of time.) After that, no human intervention is needed; the virus

can spread by itself.

A more common means of virus activation is as an attachment to an e-mail

message. In this attack, the virus writer tries to convince the victim (the recipient of

the e-mail message) to open the attachment. Once the viral attachment is opened,

the activated virus can do its work. Some modern e-mail handlers, in a drive to

"help" the receiver (victim), automatically open attachments as soon as the receiver

opens the body of the e-mail message. The virus can be executable code

embedded in an executable attachment, but other types of files are equally

dangerous. For example, objects such as graphics or photo images can contain

code to be executed by an editor, so they can be transmission agents for viruses. In

general, it is safer to force users to open files on their own rather than automatically;

it is a bad idea for programs to perform potentially security-relevant actions without a

user's consent. However, ease-of-use often trumps security, so programs such as

browsers, e-mail handlers, and viewers often "helpfully" open files without asking the

user first.

1-Appended Viruses

A program virus attaches itself to a program; then, whenever the program is run, the

virus is activated. This kind of attachment is usually easy to program.

In the simplest case, a virus inserts a copy of itself into the executable program file

before the first executable instruction. Then, all the virus instructions execute first;

after the last virus instruction, control flows naturally to what used to be the first

program instruction.

This kind of attachment is simple and usually effective. The virus writer does not

need to know anything about the program to which the virus will attach, and often

the attached program simply serves as a carrier for the virus. The virus performs its

task and then transfers to the original program. Typically, the user is unaware of the

effect of the virus if the original program still does all that it used to. Most viruses

attach in this manner.

2-Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original program but has

control before and after its execution. For example, a virus writer might want to

prevent the virus from being detected. If the virus is stored on disk, its presence will

be given away by its file name, or its size will affect the amount of space used on the

disk. The virus writer might arrange for the virus to attach itself to the program that

constructs the listing of files on the disk. If the virus regains control after the listing

program has generated the listing but before the listing is displayed or printed, the

virus could eliminate its entry from the listing and falsify space counts so that it

appears not to exist.

3-Integrated Viruses and Replacements

A third situation occurs when the virus replaces some of its target, integrating itself

into the original code of the target. Clearly, the virus writer has to know the exact

structure of the original program to know where to insert which pieces of the virus.

Finally, the virus can replace the entire target, either mimicking the effect of the

target or ignoring the expected effect of the target and performing only the virus

effect. In this case, the user is most likely to perceive the loss of the original program.

4-Document Viruses

Currently, the most popular virus type is what we call the document virus, which is

implemented within a formatted document, such as a written document, a database,

a slide presentation, a picture, or a spreadsheet. These documents are highly

structured files that contain both data (words or numbers) and commands (such as

formulas, formatting controls, links). The commands are part of a rich programming

language, including macros, variables and procedures, file accesses, and even

system calls. The writer of a document virus uses any of the features of the

programming language to perform malicious actions.

The ordinary user usually sees only the content of the document (its text or data), so

the virus writer simply includes the virus in the commands part of the document, as

in the integrated program virus.

How Viruses Gain Control??

The virus (V) has to be invoked instead of the target (T). Essentially, the virus either

has to seem to be T, saying effectively "I am T" or the virus has to push T out of the

way and become a substitute for T, saying effectively "Call me instead of T."

The virus can assume T's name by replacing (or joining to) T's code in a file

structure; this invocation technique is most appropriate for ordinary programs. The

virus can overwrite T in storage (simply replacing the copy of T in storage, for

example). Alternatively, the virus can change the pointers in the file table so that the

virus is located instead of T whenever T is accessed through the file system.

Virus Completely Replacing a Program.

The virus can supplant T by altering the sequence that would have invoked T to now

invoke the virus V; this invocation can be used to replace parts of the resident

operating system by modifying pointers to those resident parts, such as the table of

handlers for different kinds of interrupts.

Homes for Viruses

The virus writer may find these qualities appealing in a virus:

 It is hard to detect.

 It is not easily destroyed or deactivated.

 It spreads infection widely.

 It can reinfect its home program or other programs.

 It is easy to create.

 It is machine independent and operating system independent.

Few viruses meet all these criteria. The virus writer chooses from these objectives

when deciding what the virus will do and where it will reside.

Just a few years ago, the challenge for the virus writer was to write code that would

be executed repeatedly so that the virus could multiply. Now, however, one

execution is enough to ensure widespread distribution. Many viruses are transmitted

by e-mail, using either of two routes. In the first case, some virus writers generate a

new e-mail message to all addresses in the victim's address book. These new

messages contain a copy of the virus so that it propagates widely.

Often the message is a brief, chatty, nonspecific message that would encourage the

new recipient to open the attachment from a friend (the first recipient). For example,

the subject line or message body may read "I thought you might enjoy this picture

from our vacation." In the second case, the virus writer can leave the infected file for

the victim to forward unknowingly. If the virus's effect is not immediately obvious, the

victim may pass the infected file unwittingly to other victims.

Let us look more closely at the issue of viral residence.

One-Time Execution

The majority of viruses today execute only once, spreading their infection and

causing their effect in that one execution. A virus often arrives as an e-mail

attachment of a document virus. It is executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular one, is the so-called

boot sector virus. When a computer is started, control begins with firmware that

determines which hardware components are present, tests them, and transfers

control to an operating system. A given hardware platform can run many different

operating systems, so the operating system is not coded in firmware but is instead

invoked dynamically, perhaps even by a user's choice, after the hardware test.

The operating system is software stored on disk. Code copies the operating system

from disk to memory and transfers control to it; this copying is called the bootstrap

(often boot) load because the operating system figuratively pulls itself into memory

by its bootstraps. The firmware does its control transfer by reading a fixed number of

bytes from a fixed location on the disk (called the boot sector) to a fixed address in

memory and then jumping to that address (which will turn out to contain the first

instruction of the bootstrap loader). The bootstrap loader then reads into memory

the rest of the operating system from disk. To run a different operating system, the

user just inserts a disk with the new operating system and a bootstrap loader. When

the user reboots from this new disk, the loader there brings in and runs another

operating system. This same scheme is used for personal computers, workstations,

and large mainframes.

To allow for change, expansion, and uncertainty, hardware designers reserve a

large amount of space for the bootstrap load. The boot sector on a PC is slightly

less than 512 bytes, but since the loader will be larger than that, the hardware

designers support "chaining," in which each block of the bootstrap is chained to

(contains the disk location of) the next block. This chaining allows big bootstraps but

also simplifies the installation of a virus. The virus writer simply breaks the chain at

any point, inserts a pointer to the virus code to be executed, and reconnects the

chain after the virus has been installed.

 Boot Sector Virus Relocating Code.

The boot sector is an especially appealing place to house a virus. The virus gains

control very early in the boot process, before most detection tools are active, so that

it can avoid, or at least complicate, detection. The files in the boot area are crucial

parts of the operating system. Consequently, to keep users from accidentally

modifying or deleting them with disastrous results, the operating system makes

them "invisible" by not showing them as part of a normal listing of stored files,

preventing their deletion. Thus, the virus code is not readily noticed by users.

Memory-Resident Viruses

Some parts of the operating system and most user programs execute, terminate,

and disappear, with their space in memory being available for anything executed

later. For very frequently used parts of the operating system and for a few

specialized user programs, it would take too long to reload the program each time it

was needed. Such code remains in memory and is called "resident" code. Examples

of resident code are the routine that interprets keys pressed on the keyboard, the

code that handles error conditions that arise during a program's execution, or a

program that acts like an alarm clock, sounding a signal at a time the user

determines. Resident routines are sometimes called TSRs or "terminate and stay

resident" routines.

Virus writers also like to attach viruses to resident code because the resident code is

activated many times while the machine is running. Each time the resident code

runs, the virus does too. Once activated, the virus can look for and infect uninfected

carriers. For example, after activation, a boot sector virus might attach itself to a

piece of resident code. Then, each time the virus was activated it might check

whether any removable disk in a disk drive was infected and, if not, infect it. In this

way the virus could spread its infection to all removable disks used during the

computing session.

A virus can also modify the operating system's table of programs to run. On a

Windows machine the registry is the table of all critical system information, including

programs to run at startup. If the virus gains control once, it can insert a registry

entry so that it will be reinvoked each time the system restarts. In this way, even if

the user notices and deletes the executing copy of the virus from memory, the virus

will return on the next system restart.

Other Homes for Viruses

A virus that does not take up residence in one of these cozy establishments has to

fend more for itself. But that is not to say that the virus will go homeless.

One popular home for a virus is an application program. Many applications, such as

word processors and spreadsheets, have a "macro" feature, by which a user can

record a series of commands and repeat them with one invocation. Such programs

also provide a "startup macro" that is executed every time the application is

executed. A virus writer can create a virus macro that adds itself to the startup

directives for the application. It also then embeds a copy of itself in data files so that

the infection spreads to anyone receiving one or more of those files.

Libraries are also excellent places for malicious code to reside. Because libraries

are used by many programs, the code in them will have a broad effect. Additionally,

libraries are often shared among users and transmitted from one user to another, a

practice that spreads the infection. Finally, executing code in a library can pass on

the viral infection to other transmission media. Compilers, loaders, linkers, runtime

monitors, runtime debuggers, and even virus control programs are good candidates

for hosting viruses because they are widely shared.

Virus Signatures

A virus cannot be completely invisible. Code must be stored somewhere, and the

code must be in memory to execute. Moreover, the virus executes in a particular

way, using certain methods to spread. Each of these characteristics yields a telltale

pattern, called a signature, that can be found by a program that looks for it. The

virus's signature is important for creating a program, called a virus scanner, that can

detect and, in some cases, remove viruses. The scanner searches memory and

long-term storage, monitoring execution and watching for the telltale signatures of

viruses.

The Source of Viruses

Since a virus can be rather small, its code can be "hidden" inside other larger and

more complicated programs. Two hundred lines of a virus could be separated into

one hundred packets of two lines of code and a jump each; these one hundred

packets could be easily hidden inside a compiler, a database manager, a file

manager, or some other large utility.

Virus discovery could be aided by a procedure to determine if two programs are

equivalent. However, theoretical results in computing are very discouraging when it

comes to the complexity of the equivalence problem. The general question "Are

these two programs equivalent?" is undecidable (although that question can be

answered for many specific pairs of programs). Even ignoring the general

undecidability problem, two modules may produce subtly different results that mayor

may notbe security relevant. One may run faster, or the first may use a temporary

file for workspace whereas the second performs all its computations in memory.

These differences could be benign, or they could be a marker of an infection.

Therefore, we are unlikely to develop a screening program that can separate

infected modules from uninfected ones.

Although the general is dismaying, the particular is not. If we know that a particular

virus may infect a computing system, we can check for it and detect it if it is there.

Having found the virus, however, we are left with the task of cleansing the system of

it. Removing the virus in a running system requires being able to detect and

eliminate its instances faster than it can spread.

Truths and Misconceptions About Viruses

 Viruses can infect only Microsoft Windows systems. False. Among students

and office workers, PCs running Windows are popular computers, and there

may be more people writing software (and viruses) for them than for any other

kind of processor. Thus, the PC is most frequently the target when someone

decides to write a virus. However, the principles of virus attachment and

infection apply equally to other processors, including Macintosh computers,

Unix and Linux workstations, and mainframe computers. Cell phones and

PDAs are now also virus targets. In fact, no writeable stored-program

computer is immune to possible virus attack. As we noted in Chapter 1, this

situation means that all devices containing computer code, including

automobiles, airplanes, microwave ovens, radios, televisions, voting machines,

and radiation therapy machines have the potential for being infected by a virus.

 Viruses can modify "hidden" or "read-only" files. True. We may try to protect

files by using two operating system mechanisms. First, we can make a file a

hidden file so that a user or program listing all files on a storage device will not

see the file's name. Second, we can apply a read-only protection to the file so

that the user cannot change the file's contents. However, each of these

protections is applied by software, and virus software can override the native

software's protection. Moreover, software protection is layered, with the

operating system providing the most elementary protection. If a secure

operating system obtains control before a virus contaminator has executed,

the operating system can prevent contamination as long as it blocks the

attacks the virus will make.

 Viruses can appear only in data files, or only in Word documents, or only in

programs. False. What are data? What is an executable file? The distinction

between these two concepts is not always clear, because a data file can

control how a program executes and even cause a program to execute.

Sometimes a data file lists steps to be taken by the program that reads the

data, and these steps can include executing a program. For example, some

applications contain a configuration file whose data are exactly such steps.

Similarly, word-processing document files may contain startup commands to

execute when the document is opened; these startup commands can contain

malicious code. Although, strictly speaking, a virus can activate and spread

only when a program executes, in fact, data files are acted on by programs.

Clever virus writers have been able to make data control files that cause

programs to do many things, including pass along copies of the virus to other

data files.

 Viruses spread only on disks or only through e-mail. False. File-sharing is

often done as one user provides a copy of a file to another user by writing the

file on a transportable disk. However, any means of electronic file transfer will

work. A file can be placed in a network's library or posted on a bulletin board.

It can be attached to an e-mail message or made available for download from

a web site. Any mechanism for sharing filesof programs, data, documents, and

so forthcan be used to transfer a virus.

 Viruses cannot remain in memory after a complete power off/power on reboot.

True, but . . . If a virus is resident in memory, the virus is lost when the

memory loses power. That is, computer memory (RAM) is volatile, so all

contents are deleted when power is lost.[2] However, viruses written to disk

certainly can remain through a reboot cycle. Thus, you can receive a virus

infection, the virus can be written to disk (or to network storage), you can turn

the machine off and back on, and the virus can be reactivated during the

reboot. Boot sector viruses gain control when a machine reboots (whether it is

a hardware or software reboot), so a boot sector virus may remain through a

reboot cycle because it activates immediately when a reboot has completed.

 Viruses cannot infect hardware. True. Viruses can infect only things they can

modify; memory, executable files, and data are the primary targets. If

hardware contains writeable storage (so-called firmware) that can be

accessed under program control, that storage is subject to virus attack. There

have been a few instances of firmware viruses. Because a virus can control

hardware that is subject to program control, it may seem as if a hardware

device has been infected by a virus, but it is really the software driving the

hardware that has been infected. Viruses can also exercise hardware in any

way a program can. Thus, for example, a virus could cause a disk to loop

incessantly, moving to the innermost track then the outermost and back again

to the innermost.

 Viruses can be malevolent, benign, or benevolent. True. Not all viruses are

bad. For example, a virus might locate uninfected programs, compress them

so that they occupy less memory, and insert a copy of a routine that

mk:@MSITStore:E:/!fci/t2/4-أمن%20الحاسبات/0132390779_Prentice%5b1%5d.Hall_-_Security.in.Computing.4th.Edition.Oct.2006.chm::/0132390779/ch03lev1sec3.html#ch03fn02

decompresses the program when its execution begins. At the same time, the

virus is spreading the compression function to other programs. This virus

could substantially reduce the amount of storage required for stored programs,

possibly by up to 50 percent. However, the compression would be done at the

request of the virus, not at the request, or even knowledge, of the program

owner.

