
 

 

Thinking in Prolog 
imperatively !! 

 
for c++/java/c# programmers  

 
 

 
BonAppetite!© 
dr_dos_ok@yahoo.com 

 
 



dr_dos_ok@yahoo.com 1

(0) user interface 
 

 
 
No mouse !! Menus reached using Alt + first letter 
 
File Menu 

 

Load : open a certain file 
Pick : choose from the last opened files 
New file : clear the edit area. 
Save : save the file, follows a "write to" 
Write to : the first save, to write the file 
Directory : open a certain directory 
Change directory 
Os shell : open the command prompt 
Quit  

 
Edit Menu 
just send you to the edit area. 
 
Run Menu 
just send you to the run area. If there is an internal goal 
it is executed. 
 
Compile Menu 
generate .obj file then the .exe file. 
there must be an internal goal. 
 
Debugging  
put the word trace at the first line of the program, then 
run ( Alt + R), then enter a goal, trace by continue 
pressing F10. Keep your eye on Edit, Message, Trace areas.



dr_dos_ok@yahoo.com 2

(1) prolog program sections  
 
1. Clauses section 
clauses = facts and rules  
 

Fact :  
a relation name followed by objects enclosed in 
parentheses. The facts ends with a period (.) 

relation Ayman likes Saly likes( ayman , saly) 
property Kermit is geen  green ( kermit) 

 
Rule : 
Prolog rule has two parts Head and Body 

Head : <subgoal1>,<subgoal2> , … , <subgoalN> 
  
2 Predicate Section  
If you define your own predicate in the clauses section of 
prolog program, you must declare it in a predicates section. 
predicate_name ( arg_typel , arg_type2, … , arg_typeN) 
 
You can have two predicates with the same name but different 
arity (number of arguments that a predicate takes). 
 
3. Domains Section 

☺ giving meaningful names to existing domains  
☺ declare data structures. More about this later.  

 
Built-in domains 

char, real , string, symbol, integer  
 
4. Goal Section 
☺ goal is same as the body of a Rule but not followed by  :- 
☺ goal is similar to main() function in c++ programs 
☺ Two types of goal are 

External goal , which gives the ability to change goals  
Internal goal , we can compile to a .exe file 

  
5. Database Section 
like predicates section but enables to update, remove, or 
add the facts at runtime. 
 
6.Constants section 

hundred  = (10*10) 
pi    = 3.141592653 

 
 



dr_dos_ok@yahoo.com 3

 (2) variables   
The first character of the name must be an upper case 
letter or an underscore after which any number of 
letters , digits or underscore can be used . 

 
Anonymous Variables 
☺ Anonymous variables used to ignore the values you don’t 

need. The anonymous variable matches anything.  
☺ It is represented by alone underscore _ 
☺ owns( _ , shoes) % Everyone owns shoes 

 
 (3) Compound data   
 
class Date 
{ 

String month; 
int day; 
int year; 
 
Date(String m, int d, int y) 
{ 

this.month = m; 
this.day = d; 
this.year = y; 

} 
} 
void Main () 
{ 

Date x = new Date("oct", 3, 2007); 
} 
domains  

date_type = date(string, integer, integer) 
goal 

X = date("oct", 3, 2007) 
 
☺ date_type is the date type name 
☺ date is called the functor, and its effect is similar to 

the constructor. 
 
(4) comments  
 

/*  Multiple  
line  
comment */  

 
% single line comment  



dr_dos_ok@yahoo.com 4

 (5) Input/Output [from the system/user]   
 
Writing    

String line= "abc"; 
int i = 2; 
float r= 4.6; 
cout << line << 2 << r << endl; 
Line = "abc", 
I = 2, 
R = 4.6, 
write (Line, I, R), nl 

nl for new line, it generates a new line to display screen.  
 
Reading 

String line; cin >> line; 
int i; cin >> i; 
float r; cin >> r; 
char c; cin >> c; 
readln (Line), 
readint(I), 
readreal (R), 
readchar (C), 
readterm(date_type, Term), 
file_str("C:\\1.TXT", Text) 

 
 
(6) IF  
 

if ( condition ) 
if_body; 

else 
else_body; 

predicates 
 if(t1,t2, ..., tn) 
clauses 
 if(V1,V2, ..., Vn) :- 
  condition, !, 
  if_body . 
 if(V1,V2, ..., Vn) :- 

else_body . 
Where  
☺ V1,V2,..., Vn are variables appearing in condition . 
☺ t1,t2, ..., tn are data types of V1,V2, ..., Vn 
☺ Sentences of if_body and else_body will be separated by 

commas not semicolons. 
 



Example : Minimum 
input: two numbers x1, x2 
output : the minimum of them 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

#include <iostream.h> 
void Main() 
{ 
 int x1, x2; 
 cin >> x1; 
 cin >> x2; 
 
 if ( x1 < x2) 
 cout << x1;  
 else 
  cout << x2; 
} 

predicates 
 if_minimum(integer, integer) 
clauses 
 if_minimum(X1, X2) :- 
  X1 < X2, !, 
  write (X1). 
 if_minimum(_, X2) :- 
  
goal  

write (X2). 

 readint(Y1), 
 readint(Y2), 
 if_minimum(Y1, Y2) 

Note  
☺ In prolog code, line 7, we replace X1 with _  
Generally, if a variable in the head f(V1,..., Vn) does 
not appear in the body , it is preferred to be replaced 
with _ otherwise a warning arises. 

 
 
(7) SWITCH  
 

switch (var) 
 { 
  case v1 :  case_v1_body;  break; 
  case v2 :  case_v2_body;  break; 
  M 
  case vn :  case_vn_body;  break; 
  default:  default_body;  break; 
 } 

predicates 
 case(t_var) 
clauses 
 case(v1) :-  case_v1_body,  !. 
 case(v2) :-  case_v2_body,  !. 
  M
 case(vn) :-  case_vn_body,  !. 
 case(_) :-  default_body,  !. 

 

Where  
☺ v1,v2,..., vn are possible values for var variable . 
☺ t_var is data type of var variable. 
☺ Sentences of case_v1_body, case_v2_body,..., 

case_vn_body, and default_body are separated by commas. 

dr_dos_ok@yahoo.com 5



dr_dos_ok@yahoo.com 6

Example : Days 
input: a number n 
output : the day name 

#include <iostream.h> 
void Main() 
{ 
 int n; 
 cin >> n; 
 
 switch (n) 
 { 
  case 1 :  cout << "Saturday";  break; 
  case 2 :  cout << "Sunday";  break; 
  case 3 :  cout << "Monday";  break; 
  case 4 :  cout << "Tuesday";  break; 
  case 5 :  cout << "Wednesday";  break; 
  case 6 :  cout << "Thursday";  break; 
  case 7 :  cout << "Friday";  break; 
  default:  cout << "Bogus !!";  break; 
 } 
} 
predicates 
 case
clauses 

_days(integer) 

 case_days(1) :-  write (saturday),  !. 
 case_days(2) :-  write (sunday),   !. 
 case_days(3) :-  write (monday),   !. 
 case_days(4) :-  write (tuesday),   !. 
 case_days(5) :-  write (wednesday),  !. 
 case_days(6) :-  write (thursday),  !. 
 case_days(7) :-  write (friday),   !. 
 case_days(_) :-  write ("Bogus !!"),  !. 
goal  
 readint(N), 
 case_days(N) 
 
Note  
☺ In prolog code, we output days without enclosing them in 

double quotes ,e.g. saturday rather than "Saturday". 
this is allowed since it is in the form of symbol data. 

☺ ! is called the cut. Its effect is similar to break to 
prevent testing other cases when the current case is 
matched. However, it can be put anywhere not only the 
last sentence as the break. Usually it is put at the 
first , i.e. after :-  

 
 



dr_dos_ok@yahoo.com 7

(8) FOR  
 

for (i= initValue; condition, iteration) 
for_body; 

predicates 
   for(integer,integer) 
clauses 
 for(I, N) :- 
  neg_condition, !, . 
 for(I, N) :- 

for_body , 
iteration, 
for( NewI, N). 

Where  
☺ neg_condition is the negation of condition . while 

condition is a looping condition, neg_condition is 
stopping condition. 

☺ iteration usually take the form i++ or i--. we cannot 
write I=I+1 in prolog , because this may be 
misunderstood as a condition test if I equals I+1. The 
correct form is NewI=I+1 

 
 
Example : Counting 

input: a number n 
output : the numbers from 0 to n-1 , one per line 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

#include <iostream.h> 
void Main() 
{ 
 int n; 
 cin >> n; 
 
 for(int i=0; i<n; i++)
     cout << i << "\n"; 
 
} 

predicates 
   for_c
clauses 

ount(integer,integer)

 for_count(I, N) :- 
  I = N, !. 
 for_count(I, N) :- 
  write (I, "\n"), 
  NewI = I + 1, 
  
goal  

for_count(NewI, N). 

 readint(N), 
for_count(0, N) 

 
Note  

☺ In prolog code, line 12, we give the initValue for I, 
that is 0. 

☺ In prolog code, line 5, the negation of i<n is I>=N . 
However, the condition I = N is enough . 

 



dr_dos_ok@yahoo.com 8

(9) DO WHILE / REPEAT UNTIL     
 

do  
{ 

do_body; 
}while (condition); 

repeat 
{ 

do_body; 
}until(neg_condition);

predicates 
do 
whil

clauses 
e 

 do. 
do :- do. 
 
while :- do,  

do_body , 
  neg_condition, !, . 

Where  
☺ neg_condition is the negation of condition . while 

condition is a looping condition, neg_condition is 
stopping condition. 

☺ do predicate is used to generate virtual alternatives 
(untried passes). 

 
 
Example : Typing 

idea: continue 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

#include <iostream.h> 
void Main() 
{ 
 char c; 
 
 do 

{ 
cin >> c; 
co

}while( c != '\r') 
ut << c; 

      
} 

predicates 
repeat  
typing 

clauses 
 repeat. 

repeat :- repeat. 
 
typing :- repeat,  

readchar(C),  
write(C) , 
C = ’\r’,   !. 

goal  
typing 

 
Note  

☺ In prolog code, line 11, the negation of c != '\r' is 
C = ’\r’.  

 
 



dr_dos_ok@yahoo.com 9

(10) SQL select   
 

students table 
id name 
1 ali 
2 ahmed 
M M  

 
create table students (id int, name text); 
 
insert into students(1, "ali"); 
insert into students(2, "ahmed"); 
M 
 
predicates 
 students(integer, symbol) 
clauses 
 students(1, ali). 
 students(2, ahmed). 
  M

 
Now, let's try to execute a select query 
 

 

select id, name from students; 
 

predicates 
 query1 
clauses 
 query1 :-  
  students(Id, Name), 
  write(Id, " ", Name, "\n"), 
  fail. 
 query1. 

 
Note  
☺ In prolog code, fail is used to tell prolog that the 

current solution is not good, and forces it to try other 
solutions . 

☺ The last clause, i.e. query1, is put for satisfaction 
purpose . If you remove it, you will get the table 
printed then followed with "No solution". 

 
 
 
 
 



dr_dos_ok@yahoo.com 10

(11) Arrays Æ List  
 

void f ( int[] x) 
{ 

int[] a = {1,2,3}; 
} 
domains 
 my_list
predicates 

 = integer* 

f(my_list) 
clauses 

f(X) :- 
 A= [1,2,3]. 

 
 
A list consists of two parts:  

Head : the first element,    
Tail : all the subsequent elements.  

The empty list can’t be broken into head and tail. 
A list can be written as [Head | Tail] 
 
 

 

List Head Tail 
['a' , 'b' , 'c'] 'a' [ 'b' , 'c' ] 
['a'] 'a' [] 
[] Undefined Undefined 
[ [1,2,3] , [2,3,4] , [] ] [1,2,3] [ [2,3,4], [] ] 

 
Unification of Lists 

List 1 List 2 Variable Binding 
[X, Y, Z] [egg, eats, bob] X=egg,   Y=eats,  Z=bob 
[c] [X|Y] X=c , Y=[] 
[1,2,3,4] [X , Y| Z] X=1 ,Y=2 , Z=[3,4] 
[1,2] [3 |X] fail 

 
 
Manipulating Lists  
Arrays are manipulated using for loop, but lists are 
manipulated as follows : 

"If the list becomes empty, Stop. 
Else,  

manipulate the head (a single element),     
then manipulate the tail (a list)" 

 
which is much similar to foreach in c#



dr_dos_ok@yahoo.com 11

 
Type[] a = {...}; 
foreach (Type x in a) 
{ 

f(x); 
} 

domains 
 list = 
predicates 

type* 

foreach(list) 
clauses 

foreach(A) :- A=[], !. 
foreach([X|Rest]):- 
 f(X), 

foreach(Rest). 
 
Example : Writing out a list 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

#include <iostream.h> 
void Main() 
{ 
 int[] a; 
 a = {1,2,3}; 
 
 foreach(int x in a)
  cout << x; 
} 

domains 
 list = integer* 
predicates 

fore
clauses 

ach(list) 

foreach( [] ). 
foreach([X|Rest]):- 
 write(X), 

foreach(Rest). 
goal  

A= [1,2,3], 
 foreach(A) 

 
Note  

☺ In prolog code, line 6, it should be written as 
foreach(A) :- A=[], !. 

 
Generally, if a variable in the head appears once in the 
body giving it a value or testing it for a value, it is 
preferred to be replaced in the head. 



dr_dos_ok@yahoo.com 12

Some most-used list operations 
 
member  

DOMAINS 
list = element* 
element = symbol 

PREDICATES 
member(name, namelist) 

CLAUSES 
member(Name, [Name|_] ). 
member(Name [_|Tail]) :- 

member (Name, Tail). 
 
append 

DOMAINS  
list = element* 
element = integer 

PREDICATES 
appe

CLAUSES 
nd(list, list, list) 

append( [] , List, List) . 
append( [H|L1] ,L2, [H|L3] ) :- 

append(Ll,L2,L3). 
 
length_of 

DOMAINS 
list = element* 
element = integer  

PREDICATES 
length_of (list, integer) 
length_of (list, integer, integer) 

CLAUSES 
length_of(List, Length):- 

length_of(List, Length, 0). 
 

length_of ( [] , N, N) . 
length_of( [_|T] , N, I) :- 

NewI = I + 1, 
length_of(T, N, NewI)  . 

 
 


