
[1] Describe with examples, the three inference rules involving quantifiers

The three new inference rules are as follows:

1- Universal Instantiation : For any sentence a, variable v, and ground term g (a term

without variables):

α), } / { SUBST(

α

gv

v

For example, from x Likes(x, IceCream), we can use the substitution {x/Ben} and

infer Likes(Ben, IceCream).

2- Existential Instantiation: For any sentence a, variable v , and constant symbol k

that does not appear elsewhere in the knowledge base:

α), } / { SUBST(

α

kv

v

For example, from x Kill(x, Victim), we can infer Kill(Murderer, Victim), as long

as Murderer does not appear elsewhere in the knowledge base.

3- Existential Introduction: For any sentence a, variable v that does not occur in a,

and ground term g that does occur in a:

α), } / { SUBST(

α

vgv

For example, from Likes(Jerry, IceCream) we can infer x Likes(x, IceCream).

[2] Write the syntax of Generalized Modus Ponens and Generalized Resolution

Generalized Modus Ponens:

For atomic sentences pi, pi', and q, where there is a substitution such that

SUBST(, pi') = SUBST(, pi), for all i:

),SUBST(

)...(,,..., 2121

q

qpppppp nn

Generalized Resolution

For literals pj, and qk where UNIFY(pj , qk) = 0:

 nkkmjj

nk

mj

qqqqppppSUBST

qqq

ppp

,

......

......

111111

1

1

[3] define the job of Unify routine, then find out the result of unifying :

a) UNIFY (Knows(John, x), Knows(John, Jane))

b) UNIFY (Knows(John, x), Knows(y, Leonid))

c) UNIFY (Knows(John, x), Knows(y, Mother (y)))

d) UNIFY (Knows(John, x), Knows(x, Elizabeth))

The job of the unification routine, UNIFY, is to take two atomic sentences p and q and

return a substitution that would make p and q look the same.

If there is no such substitution, then UNIFY should return fail. Formally,

UNIFY (p, q) = where SUBST(, p) = SUBST(, q)

 is called the unifier of the two sentences.

Result of unification:

a) {x/Jane}

b) {x/Leonid, y/John}

c) {y/John, x/Mother(John)}

d) fail

 [4] Represent the following sentences in first-order logic, then in CNF

1. Animals can outrun any animals that they can eat.

2. Carnivores eat other animals.

3. Outrunning is transitive; if x can outrun y and y can outrun z, then x can outrun z.

4. Lions eat zebras.

5. Zebras can outrun dogs.

6. Dogs are carnivores.

FOL expressions:

1. ∀ x, y eats(x, y) outruns(x, y)

2. ∀ x carnivorous(x) ∃ y eats(x, y)

3. ∀ x, y, z outruns(x, y) outruns(y, z) outruns(x, z)

4. eats(Lions, Zebras)

5. outruns(Zebras, dogs)

6. carnivorous(Dogs)

CNF expressions:

1. eats(x1, y1) outruns(x1, y1)

2. carnivorous(x2) eats(x2, food(x2)

3. outruns(x3, y2) outruns(y2, z1) outruns(x3, z1)

4. eats(Lions, Zebras)

5. outruns(Zebras, dogs)

6. carnivorous(Dogs)

[5] FORWARD-CHAIN algorithm is based on FIND-AND-INFER procedure and

composition.

a) Write FIND-AND-INFER procedure.

b) Define the idea of a composition of substitutions.

a)

procedure FIND-AND-INFER(KB, premises, conclusion,)

if premises = [] then

FORWARD-CHAIN(KB, SUBST(, conclusion))

else for each p' in KB such that UNIFY (p', SUBST(, FIRST(premises))) = 2 do

FIND-AND-INFER (KB, REST(premises), conclusion, COMPOSE(, 2))

end

b)

COMPOSE(, 2) is the substitution whose effect is identical to the effect of applying

each substitution in turn. That is,

 SUBST(COMPOSE(1, 2) , p) = SUBST(2,SUBST(1,p))

 [6] Using the following facts

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Romans were either loyal to Caesr or hated him.

6. Everyone is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus tried to assassinate Caesar.

Answer the question "Did Marcus hate Caesar".

Hint : Write CNF sentences, then try to prove that Marcus hate Caesar

 [7] Consider the following sentences

 John likes all kinds of food

 Apples are food

 Chicken is food

 Anything anyone eats and isn't killed by is food

 Bill eats peanuts and is still alive

 Sue eats everything Bill eats

(a) Translate these sentences into formulas in predicate logic

(b) Prove that John likes peanuts using BACKWARD CHAINING

(c) Convert the formulas of part (a) into clause form

(d) Prove that John likes peanuts using resolution

(e) Use resolution to answer the question "What food does Sue eat?"

[9] Assume the following facts :

 Steve only likes easy courses.

 Science courses are hard.

 All the courses in the basketweaving department are easy.

 BK301 is a basketweaving course.

Use resolution to answer the question, "What course would Steve like?"

[10] Consider the following knowledgebase :
),()()(:: yxeattolikesyfishxcatyx

)()(: xcatxcalicox

)()(: xfishxtunax

tuna(charlie)

tuna(herb)

calico(puss)

(a) Convert these wffs into Horn clauses.

(b) Convert the Horn clauses into a PROLOG program.

(c) Write a PROLOG query corresponding to the question, "What does Puss like to eat?"

and show how it will be answered by your program.

