Recursion
M.A. El-dosuky

[1] The following Program compute 23

#include <iostream.h>
int twoRaisedTo0() {

return 1;}
int twoRaisedTol(){

return 2 * twoRaisedToO();}
int twoRaisedTo2(){

return 2 * twoRaisedTol();}
int twoPaisedTo3(){

return 2 * twoRaisedTo2();}
int main()
{
cout « "2 to the 3rd is "' «
twoRaisedTo3();
return O ;

}

* Rewrite it Using Recursion

int twoRaisedTo (int n){

if(n==0)
return 1;
else

return 2 * twoRaisedTo(n-1);

}

[2] Explain the following:-

e Recursion :Sometimes the best way to solve a problem is to solve a smaller
version of the exact same problem first. When turn this into program, you end
up with functions that call themselves.

e Closed Form : An equation that is not defined recursively.

e Evaluation by substitution : To evaluate recursive definition by hand, we keep
substituting values until we get to something evaluated without recursion.

e Recursive Search Algorithms : the problem is to find a target in an array a of
length n. To apply recursion to this problem, we need to figure out a way to
solve the complete problem given a solution to a smaller version of the same
problem

e Recursive Sorting Algorithm : the problem is to order an array a of length n. To
apply recursion to this problem, we need to figure out a way to solve the
complete problem given a solution to a smaller version of the same problem...
Quickisort[9]

[3] Using recursive form of factorial function (using equation-1) to substitute and evaluate
f(5)

Equation 1
1 n=0
[4] Use Equation-1 to write a program that computes the factorial function.
Answer of questions 3 and 4

F(n):{nx F(n-1) n>1

Forward Substitution Backward Substitution
f(5) =5 f (4) f(5)=5* f (4) =5*24 =120
f(4)=4*1(3) f(4)=4*f(3)=4%6=24
f(3)=3*f(2) f(3)=3*f(2)=3*2=6
f(2)=2*f(1) f(Q=2*f(1)=2*1=2
f (1) =1* f(0) f(@) =1* f(0) =1*1=1
f(0)=1 f(0)=1
int factorial (int n)
{
if (n==0)
return 1;
else
return n * factorial (n - 1);
}

[7] Identify the errors in the following program and write the correct version;
Code for choose recursive function. The n choose k function

int choose(int n, int k)
{
if (k==1)
return n;
else if (n == k)
return 1;
else /I recursive case: n>k and k>1
return choose(n - 1, k - 1) + choose(n - 1, k);

}

