Chapter 2

1.what are the types of Data Sets

■ F	Record	Ordered
	Relational records	Video data: sequence of images
	Data matrix, :numerical matrix	Temporal data: time-series
	Document data: text documents:	Sequential Data: transaction
	term-frequency vector	sequences
	Transaction data	Genetic sequence data
	Graph and network	Spatial, image and multimedia:
	World Wide Web	Spatial data: maps
	Social or information networks	Image data:
	Molecular Structures	Video data:

>>>2. what are Important Characteristics of Structured Data

- Dimensionality : Curse of dimensionality
- **Sparsity** : Only presence counts
- **Resolution**: Patterns depend on the scale
- **Distribution**:Centrality and dispersion

3 Data Objects

- Data sets are made up of data objects. A **data object** represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses

>>> Also called *samples*, *examples*, *instances*, *data points*, *objects*, *tuples*.

>>>Data objects are described by attributes.

>>>Database rows \rightarrow data objects; columns \rightarrow attributes.

>>> Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object. *E.g., customer_ID, name, address*

4. Discrete vs. Continuous Attributes

Discrete Attribute	Continuous Attribute					
Has only a finite or countably infinite	Has real numbers as attribute values					
set of values	E.g., temperature, height, or weight					
E.g., zip codes, profession , or the set of	Practically, real values can only be					
words in a collection of documents	measured and represented using a					
Sometimes, represented as integer	finite number of digits					
variables	Continuous attributes are typically					
■ Note: Binary attributes are a special	represented as floating-point variables					
case of discrete attributes						

>>>5.Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = { black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- <u>Symmetric binary</u>: both outcomes equally important
 - e.g., gender
- <u>Asymmetric binary</u>: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric

- Quantity (integer or real-valued)
- Ratio
 - Inherent zero-point
 - e.g., *temperature in Kelvin*, length, counts, monetary quantities
- Interval
 - No zero-point . Scale of equal-sized units. Values have order
 - E.g., *temperature in C°or F°*, calendar dates

6. Basic Statistical Descriptions of Data

- <u>Motivation</u> :To better understand the data: central tendency, variation and spread
- Data dispersion characteristics : median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
- Dispersion analysis on computed measures correspond to transformed cube

>>>6. Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies
- Quantile plot: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

7. Boxplot Analysis

- Five-number summary of a distribution: Minimum, Q1, Median, Q3, Maximum
- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

8. Histogram Analysis

- Histogram: Graph display of tabulated **frequencies**, shown as bars
- It shows what proportion of cases fall into each of several categories
- >>Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width
- The categories are usually specified as **non-overlapping** intervals of some variable. The categories (bars) must be adjacent

9.why Histograms Often Tell More than Boxplots

- The two histograms may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

10. Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- For a data *x_i* data sorted in increasing order, *f_i* indicates that approximately 100 *f_i*% of the data are below or equal to the value *x_i*

11. Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one <u>univariate</u> distribution against the corresponding quantiles of another
- View: Is there is a shift in going from one distribution to another? **yes**

We need to **label** the dark plotted points as **Q1**, **Median**, **Q3** – that would help in understanding this graph.

12. Scatter plot

- Provides a first look at **bivariate** data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points
- Determine Positively and Negatively Correlated Data

- **<u>13. Properties of Normal Distribution Curve</u>(μ: mean, σ: standard deviation)**
 - From μ - σ to μ + σ : contains about 68% of measurements
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ–3σ to μ+3σ: contains about 99.7% of it

14. Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

$$\mu = \frac{\sum x}{N}$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

■ Weighted arithmetic mean:

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Trimmed mean: chopping extreme values
- Median:
 - Middle value if odd number of values, or average of the middle two values
 - Estimated by interpolation (for *grouped data*):

$$median = L_1 + \left(\frac{n/2 - (\sum freq)l}{freq_{median}}\right) width$$

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- Empirical formula: $mean mode = 3 \times (mean median)$

15. Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q₁, median, Q₃, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR

• Variance and standard deviation (sample: s, population: σ)

■ Variance: (algebraic, scalable computation)

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$
$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} \right]$$

Standard deviation *s* (or σ) is the square root of variance s^2 (or σ^{2})

16. Proximity refers to a similarity or dissimilarity

Similarity	Dissimilarity (e.g., distance)			
Numerical measure of how alike two	Numerical measure of how different			
data objects are	two data objects are			
Value is higher when objects are more	Lower when objects are more alike			
alike	Minimum dissimilarity is often 0			
Often falls in the range [0,1]	Upper limit varies			

17. Data Matrix and Dissimilarity Matrix

Data matrix	Dissimilarity matrix			
n data points with p dimensions	n data points, but registers only the			
Two modes	distance			
$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1n} \end{bmatrix}$	A triangular matrix			
	Single mode			
$x_{\cdot,\tau}$ $x_{\cdot,c}$ x_{\cdot}				
	$d(2,1) \qquad 0$			
	d(3,1) $d(3,2)$ 0			
$\begin{bmatrix} n_1 & \dots & n_f & \dots & n_p \end{bmatrix}$: : :			
	$\begin{bmatrix} d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$			

اللي جاي قوانين ومسائل صحصح لو سمحت

→ Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, blue, green (generalization of a binary attribute)
- Method 1: Simple matching : m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

- <u>Method 2</u>: Use a large number of binary attributes
 - creating a new binary attribute for each of the *M* nominal states

→ Proximity Measure for Binary Attributes

A contingency table for binary data

	O	bject <i>j</i>	
	1	0	sum
Object i^{1}	q	r	q + r
object / 0	8	t	s+t
sum	q+s	r+t	p

Distance measure for **symmetric** binary variables:

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

Distance measure for asymmetric binary variables:

$$d(i, j) = \frac{r+s}{q+r+s}$$

■ Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q+r+s}$$

Note: Jaccard coefficient is the same as "coherence":

$$coherence(i, j) = \frac{sup(i, j)}{sup(i) + sup(j) - sup(i, j)} = \frac{q}{(q+r) + (q+s) - q}$$

>>>18.determine Dissimilarity between Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Y	N	Р	Ν	Ν	Ν
Mary	F	Y	Ν	Р	Ν	Р	Ν
Jim	М	Y	Р	Ν	Ν	Ν	Ν

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary

→ Let the values Y and P be 1, and the value N 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

Standardizing Numeric Data

- **Z**-score: $z = \frac{x \mu}{\sigma}$
 - **X**: raw score to be standardized, μ : mean of the population, σ : standard deviation
 - negative when the raw score is below the mean, "+" when above
- An alternative way: Calculate the mean absolute deviation

$$s_{f} = \frac{1}{n} (|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + ... + |x_{nf} - m_{f}|)$$

Where $m_{f} = \frac{1}{n} (x_{1f} + x_{2f} + ... + x_{nf})$

Solution is more robust than using standard deviation

Distance on Numeric Data: Minkowski Distance

■ *Minkowski distance*: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h} + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *h* is the order (the distance so defined is also called L-h norm)

Properties

- d(i, j) > 0 if $i \neq j$, and d(i, i) = 0 (Positive definiteness)
- d(i, j) = d(j, i) (Symmetry)
- $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is a metric

Special Cases of Minkowski Distance

- h = 1: Manhattan (city block, L₁ norm) distance
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

■ h = 2: (L₂ norm) <u>Euclidean</u> distance

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$

■ $h \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.

This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f}^{p} |x_{if} - x_{jf}|$$

19. Calculate Data Matrix and Dissimilarity Matrix (Minkowski Distances)

point	attribute1	attribute2
<i>x1</i>	1	2
x2	3	5
x3	2	0
<i>x4</i>	4	5

Manhattan (L₁)

L	x1	x2	x3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	x3	x4
x1	0			
x2	3.61	0		
x3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

\mathbf{L}_{∞}	x1	x2	x3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Ordinal Variables

- Order is important, e.g., rank. An ordinal variable can be discrete or continuous
- Can be treated like interval-scaled
 - replace x_{if} by their rank $r_{if} \in \{1, ..., M_f\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th

variable by
$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

■ compute the dissimilarity using methods for interval-scaled variables

Attributes of Mixed Type

- A database may contain all attribute types
 - Nominal, symmetric binary, asymmetric binary, numeric, ordinal
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

■ f is binary or nominal: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ otherwise

- f is numeric: use the normalized distance
- *f* is ordinal
 - Compute ranks r_{if} and
 - Treat z_{if} as interval-scaled

$$Z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Cosine Similarity

A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	teamc 5	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1		0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

■ Other vector objects: gene features in micro-arrays, ...

- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$,

where \bullet indicates vector dot product, ||d||: the length of vector d

20 Find the similarity between documents 1 and 2.

 $d_{1} = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$ $d_{2} = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$ $d_{1} \bullet d_{2} = 5^{*}3 + 0^{*}0 + 3^{*}2 + 0^{*}0 + 2^{*}1 + 0^{*}1 + 2^{*}1 + 0^{*}0 + 0^{*}1 = 25$ $||d_{1}|| = (5^{*}5 + 0^{*}0 + 3^{*}3 + 0^{*}0 + 2^{*}2 + 0^{*}0 + 0^{*}0 + 2^{*}2 + 0^{*}0 + 0^{*}0)^{0.5} = (42)^{0.5} = 6.481$ $||d_{2}|| = (3^{*}3 + 0^{*}0 + 2^{*}2 + 0^{*}0 + 1^{*}1 + 1^{*}1 + 0^{*}0 + 1^{*}1)^{0.5} = (17)^{0.5} = 4.12$ $\cos(d_{1}, d_{2}) = 0.94$