
Object-Oriented Programming
–––

 91

Chapter 4

Object oriented Programming

Chapter 4 Object oriented Programming
–––

 92

Chapter 4

Object oriented Programming

System modelling helps the analyst to understand the functionality

of the system and models are used to communicate with customers.

Different models present the system from different perspectives

 Context models are used to illustrate the operational context

of a system - they show what lies outside the system

boundaries.

 Behavioural models are used to describe the overall

behaviour of a system.

 Data models Used to describe the logical structure of data

processed by the system.

 Object models describe the system in terms of object classes

and their associations.

[1] Context models

Context models are used to illustrate the operational context of a

system - they show what lies outside the system boundaries.

Social & organisational concerns may affect decision on where to

position system boundaries. Architectural models show the system

and its relationship with other systems.

Object-Oriented Programming
–––

 93

Example: The context of an ATM system

 [2] Behavioural models

Behavioural models are used to describe the overall behaviour of a

system. Two types of behavioural model are:

 Data processing models that show how data is processed as

it moves through the system;

 State machine models that show the systems response to

events.

[2.1] Data-processing models

Data flow diagrams (DFDs) may be used to model the system’s

data processing. These show the processing steps as data flows

through a system. DFDs are an intrinsic part of many analysis

methods. Simple and intuitive notation that customers can

understand. Show end-to-end processing of data.

Chapter 4 Object oriented Programming
–––

 94

example: Insulin pump DFD

[2.2] State machine models

These model the behaviour of the system in response to external

and internal events. They show system’s responses to stimuli so are

often used for modelling real-time systems. State machine models

show system states as nodes and events as arcs between these

nodes. When an event occurs, the system moves from one state to

another.

Example : Microwave oven model

Object-Oriented Programming
–––

 95

Microwave oven state description

State Description

Waiting The oven is waiting for input. The display shows the

current time.

Half power The oven power is set to 300 watts. The display shows

‘Half power’.

Full power The oven power is set to 600 watts. The display shows

‘Full power’.

Set time Cooking time is set to user’s input. The display shows

the cooking time selected

Disabled Oven operation is disabled for safety. Interior light is

on. Display ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off.

Display ‘Ready to cook’.

Operation Oven in operation. Interior oven light is

on. Display shows the timer countdown.

On completion of cooking, the buzzer is

sounded for 5 seconds. Oven light is on.

Display shows ‘Cooking complete’

while buzzer is sounding.

Microwave oven stimuli

Stimulus Description

Half power The user has pressed the half power button

Full power The user has pressed the full power button

Timer The user has pressed one of the timer

buttons

Number The user has pressed a numeric key

Door open The oven door switch is not closed

Door closed The oven door switch is closed

Start The user has pressed the start button

Cancel The user has pressed the cancel button

Chapter 4 Object oriented Programming
–––

 96

 [3] Data models

Used to describe the logical structure of data processed by the

system. An entity-relation-attribute (ERA) model sets out the

entities in the system, the relationships between these entities and

the entity attributes Widely used in database design. Can readily be

implemented using relational databases.

Advantages

o Support name management and avoid duplication;

o Store of organisational knowledge linking analysis, design

and implementation;

EXAMPLE: Library semantic model

Object-Oriented Programming
–––

 97

Data dictionary entries

Name Description Type

Article Details of the published article that may be

ordered by people using LIBSYS.

Entity

authors The names of the authors of the article who

may be due a share of the fee.

Attribute

Buyer The person or organisation that orders a

copy of the article.

Entity

fee_payabl

e_to

A 1:1 relationship between Article and the

Copyright Agency who should be paid the

copyright fee.

Relation

Address

(Buyer)

The address of the buyer. This is used to

any paper billing information that is

required.

Attribute

[4] Object models

Object models describe the system in terms of object classes and

their associations. An object class is an abstraction over a set of

objects with common attributes and the services (operations)

provided by each object. Various object models may be produced

 Inheritance models;

 Aggregation models;

 Interaction models.

ADVANTAGES

 Natural ways of reflecting the real-world entities

manipulated by the system

 object classes reflecting domain entities are reusable

across systems

DISADVANTAGES

 object class identification is difficult process requiring

understanding of application domain

Chapter 4 Object oriented Programming
–––

 98

Object models and the UML

The UML (unified modelling language) is a standard representation

devised by the developers of widely used object-oriented analysis

and design methods.

It has become an effective standard for object-oriented modelling.

Object classes are rectangles with the name at the top, attributes in

the middle section and operations in the bottom section;

[4.1] Inheritance models =generalisation = is-a relationship

Organise the domain object classes into a hierarchy. Classes at the

top of the hierarchy reflect the common features of all classes.

Object classes inherit their attributes and services from one or more

super-classes. these may then be specialised as necessary.

example: User class hierarchy

Object-Oriented Programming
–––

 99

Multiple inheritance : Rather than inheriting the attributes and

services from a single parent class, a system which supports

multiple inheritance allows object classes to inherit from several

super-classes. This can lead to semantic conflicts where

attributes/services with the same name in different super-classes

have different semantics. Multiple inheritance makes class

hierarchy reorganisation more complex.

Chapter 4 Object oriented Programming
–––

 100

 [4.2] Object aggregation = composition = part-of relationship

An aggregation model shows how classes that are collections are

composed of other classes.

[4.3] Object behaviour modelling

A behavioural model shows the interactions between objects

Sequence diagrams (or collaboration diagrams) used to model

interaction between objects.

 example: Issue of electronic items

Object-Oriented Programming
–––

 101

Chapter 4 Object oriented Programming
–––

 102

Object oriented Programming in C#

Object-Oriented Programming (OOP) is a software development

paradigm that splits a program in building blocks known as objects.It

uses "objects" to design applications and computer programs. The

OOP paradigm allows developers to define the object's data,

functions, and its relationship with other objects.

Fundamental Concepts Of OOPS :
Class: A class defines the abstract characteristics of a thing

(object), including the thing's characteristics (its attributes or

properties) and the things it can do (its behaviors or methods or

features)

Objects can be grouped into classes.A class is a detailed description

of an object. It is the blueprint for an object. For example, the class

Dog would consist of traits shared by all dogs for example fur

color, and the ability to bark.

Object:A particular instance of a class is called Object. The class

of Dog defines all possible dogs by listing the characteristics that

they can have.

Object oriented Programming Features :
 i)Encapsulation

 ii)Inheritance

 iii)Polymorphism

 iv)Data Abstraction

Object-Oriented Programming
–––

 103

i) Inheritance

Getting the properties from one class to other class is called

inheritance.A parent class can inherit its behavior and state to

children classes. This concept was developed to manage

generalization and specialization in OOP and is represented by a is-

a relationship. Inheritance offers Re-usability ,Consistency ,Less

redundancy .

The idea of inheritance is at the heart of Object Oriented

programming. In essence, an object can be created which inherits

some of its functionality from another object or objects.

In order to implement this correctly, attention must be paid during

the class design phase. This process is basically a process of

identifying the common features of many specific objects and

abstracting them to a higher level.

The classic modeling example is modeling motorized transportation

types. If we look at a car, a bus and a train we can see certain

common aspects that they all share. All have wheels, all have a

maximum speed, all have an engine, all need a way to stop. Rather

than creating member elements within each class we can abstract

the common elements to another more generic class called Vehicle

which contains the common elements.

class Vehicle{

int numberOfWheels;

string enginetype;

int maxSpeed;

public bool brake();

}

Chapter 4 Object oriented Programming
–––

 104

We can now spend our time modeling the specifics of the car Class:

class Car{

int numberOfDoors;

float horsePower;

string interior;

string bodyStyle;

string make;

string model;

}

The Car class as it stands right now cannot tell us the engineType,

maximum speed, or number of wheels. In order to do this it must

inherit from the Vehicle class. This is the way of saying that a Car

IS A Vehicle. The IS A relationship is what allows objects to be

used as different types under different circumstances.

Inheriting a class is implemented by adding a colon and the class

name that you want to inherit from.

class Car:Vehicle{

…

…

}

The Car is now defined as inheriting from Vehicle. A Car IS A

vehicle. Vehicle is considered the base class for Car.

The Car now has 2 types defined for it: 1)Car 2) Vehicle.

The beauty of OOP becomes apparent when we begin to use the Car

object in different situations.

This can be seen if we look at three methods, all requiring a

parameter:

Object-Oriented Programming
–––

 105

public void getMaxSpeed(Vehicle v)

public void getModel(Car c)

public printString(Object 0)

If we create the object theCar as type Car, we can use theCar for

each one of these method calls.

Car theCar = new Car() ;

public void getMaxSpeed(theCar) //theCar IS A Vehicle

public void getModel(theCar) // theCar IS A Car …duh

public printString(theCar) // theCar IS A Object

This use of the Car object as three different types is termed

polymorphism (many shapes…or in our case, many types).

Polymorphism allows objects to be used as any type in their

inheritance chain. All objects inherit from Object when they are

created, so any created object can be used as an Object.

In Windows programming, many of the UI elements such as

Listbox, TextBox etc all derive from the Window class, and

therefore can be used in any situation that is expecting a Window

object.

Chapter 4 Object oriented Programming
–––

 106

When a class is defined as inheriting from another object, it derives

some of its functionality from that object, and then can add

additional functionality to the object. A class will inherit any of the

public and protected members of its base class.

C# does not support multiple inheritance of classes within a single

class definition. A single class can only inherit from ONE class.

For example, you could not have the Hybrid class inheriting from

Vehicle and Car in its definition.

class Hybrid:Vehicle:Car // incorrect

The Hybrid class can only inherit from one class, in this case Car.

Because Car was derived from Vehicle, Hybrid also inherits the

members of Vehicle, but it inherits them through Car, not through

Vehicle directly.

class Hybrid:Car //correct

Object-Oriented Programming
–––

 107

One problem with this is that Object hierarchies can become nested

to very deep levels if all general functionality specifications needed

to be inherited. This can degrade performance if the hierarchy is

nested to deeply. We will see how this can be resolved when we

look at Interfaces.

.Net Inheritance Capabilities :

 Ability to use the functionality contained in an existing

class in a newly created class.

 All objects in .NET are derived from, and inherit methods

from, a base class called System.Object.

 In .net we can utilize cross language inheritance (classes

developed in VB.Net can inherit from classes written in

other .Net languages as long as the base class is CLS-

compliant).

 Multiple implementation of inheritance not supported.

Can have multiple levels of inheritance, however each

derived class can have one and only one base class.

Base Class : Provides default implementation of properties and

methods It is also known as parent class or superclass

Derived class : Inherits members from the base class and all

ancestors of the base class

Overrides or extends base class to become specialized. Each

level of specialization typically adds new functionality,it is

called as sub class or child class

Chapter 4 Object oriented Programming
–––

 108

Example:

I) Geometric ShapeGeneral ObjectArea,Perimeter,color

Generalization Object encapsulates common state & behaviour

for a category of Objects

Specialization Object can inherit the common state and

behavior of a generic object

Each object needs to define its own special and particular state an

behavior. Each shape has its own color. Each shape has also

particular formulas to calculate its area and perimeter.

Object-Oriented Programming
–––

 109

Shape abstract class (Fields,Properties and Methods)

 Circle class Square class Triangle class

In the above example generalization and specialization are explined

Chapter 4 Object oriented Programming
–––

 110

II)

Classes that inherit from a class are called subclasses. The class a

subclass inherits from are called superclass. In the example,

Student is a superclass for Graduate and Undergraduate.

Graduate and Undergraduate are subclasses of Student.

 Student

 Graduate Under Graduate

Types of inheritance supported by .net :

Is a Relationship:

Implementation Inheritance: It is a form of inheritance in object-

oriented programming languages. The derived classes of the same

parent (the base class) to share code implemented in the parent.

Methods, variables, properties, events and other actual code

elements are implemented in the parent and used by the children.

Code from base class can be extended or overridden in derived

class. Examples: single implememtation inheritence-one super

class and one sub class. Multi level inheritance -the sub class of

one level forms the super class of another level.

Visual Inheritance :

Ability to reuse and extend code and visual objects from an

existing form or control .

C# doesn't support multiple implementation inheritance. C# &

VB.NET supports only multipletype/interface inheritance, i.e. you

can derive an class/interface from multiple interfaces. There is no

support for multiple implementation inheritance in .NET.

Object-Oriented Programming
–––

 111

That means a class can only derived from one class. since a lot of

ambiguity comes in disigning object model.

.Net do not support Multiple implementation inheritance. But

you can very well have multiple interface inheritance.

Uses of Inheritance:

 Code Reuse: Code that utilizes existing components usually

takes less time to write, Reduced ongoing bug fix.

 Facilitates Polymorphism : Allows you to use an object

created from a derived class in any situation where an object

created from the base class is expected. Code written in terms

of a generic base class can be leveraged even when working

with a object created from a derived class.

ii) Polymorphism :

Polymorphism is the one of the feature of OOP’S,it means one

name existing in multiple Forms , it has the ability to redefine

methods for derived classes. polymorphism is concerned with how

a class presents itself to the outside world. Polymorphism roughly

means "many forms," and specific named behavior can be

implemented in different ways by different classes.

To really understand polymorphism we need method signature,

also sometimes called a prototype. All methods have a signature,

which is defined by the method's name and the data types of its

parameters. In Polymorphism different objects have different

implementations of the same

Encapsulation has to do with hiding the internal implementation of

an object,where as Polymorphism has to do with multiple classes

having the same interface.

Chapter 4 Object oriented Programming
–––

 112

Polymorphism in Methods

As we have seen, the ability to use an object as a different type is

known as polymorphism. This provides a powerful tool for

extending and reusing code but there are some situations that must

be dealt with when dealing with inheritance. One of these is the

use of method names within the object hierarchy.

For example, our Vehicle class provides a brake() method. All

objects that inherit from vehicle will also inherit this method. But

suppose we want to have our car perform a different action when

we call the brake() method? If we think about this, we may want to

have any other object derived from Vehicle to be able to provide its

own implementation of the brake() method.

In short, we want the brake() method to be treated polymorphically,

we want the appropriate method to be called depending on the

object type. To establish this in our base class we add the virtual

keyword to the method.

Vehicle

public virtual bool brake(){}

The virtual keyword tells any class that inherits from this that it is

free to override this method with its own method of the same name.

Any class that wants to include their own version of brake() can do

so by adding the override keyword to that method. Without this

virtual keyword any derived class cannot override the method. All

methods are non-virtual by default which means that classes which

inherit the method cannot override the method. By adding the

virtual keyword to the method in the base class we allow the

derived classes to override it if they so choose.

Car

public override int brake(){}

Object-Oriented Programming
–––

 113

Any car object will now use the brake() method in the Car class,

and not rely on the method inherited from Vehicle. However, the

Car class can still call the brake method in the Vehicle class by

using the reserved keywrod name base.

public override int brake(){

 base.brake(); // call the vehicle brake method.

 // now do some special car braking things here

}

Versioning in Class Libraries

The C# language is designed so that versioning between base and

derived classes in different libraries can evolve and maintain

backwards compatibility. This means, for example, that the

introduction of a new member in a base class with the same name

as a member in a derived class is completely supported by C# and

does not lead to unexpected behavior. It also means that a class

must explicitly state whether a method is intended to override an

inherited method, or whether a method is a new method that simply

hides a similarly named inherited method.

C# allows derived classes to contain methods with the same name

as base class methods.

 The base class method must be defined virtual.

 If the method in the derived class is not preceded by new or

override keywords, the compiler will issue a warning and the

method will behave as if the new keyword were present.

 If the method in the derived class is preceded with the new

keyword, the method is defined as being independent of the

method in the base class.

 If the method in the derived class is preceded with the

override keyword, objects of the derived class will call that

method rather than the base class method.

 The base class method can be called from within the derived

class using the base keyword.

 The override, virtual, and new keywords can also be applied

to properties, indexers, and events.

Chapter 4 Object oriented Programming
–––

 114

By default, C# methods are not virtual — if a method is declared as

virtual, any class inheriting the method can implement its own

version. To make a method virtual, the virtual modifier is used in

the method declaration of the base class. The derived class can then

override the base virtual method by using the override keyword or

hide the virtual method in the base class by using the new keyword.

If neither the override keyword nor the new keyword is specified,

the compiler will issue a warning and the method in the derived

class will hide the method in the base class.

Using the new keyword will hide the base class method name and

tells the compiler to use only the derived class method within an

instance of that class. This has the effect, however, of hiding the

derived class method if the object is downcast to the base object.

Abstract and Sealed Classes

Abstract classes are classes defined so that they can only be

inherited from, an object instance cannot be created from them.

These are useful for specifying top level functionality in an

inheritance heirarchy.

You cannot create an instance of an abstract class, you can only

inherit from the class.

Classes are defined as abstract by using the abstract keyword. If

any method is defined as abstract within a class, the class is also

considered abstract and cannot be instantiated.

public abstract Vehicle {

 abstract public brake();

}

Object-Oriented Programming
–––

 115

Adding the abstract keyword to our Vehicle basically defines this

class as a “template” class which other classes can inherit from, but

from which no object can be created directly as an instance of this

class. In other words, you can never have an instance object of the

Vehicle abstract class. Although an abstract class can contain

public methods with implementation logic, any abstract methods of

the class will contain no implementation logic, as the

implementation is required in the derived class.

Sealed classes

The opposite of an abstract class, which can never create an

instance object, is the sealed class, which can never be inherited. A

sealed class is a class which can only be used as an instance object

of that class, it can never be inherited from to create sub classes.

An example of a sealed class in the framework is the FileInfo class

which provides methods for manipulating the file system.

public sealed class FileInfo : FileSystemInfo

A sealed class cannot be used as a base class. For this reason, it

cannot also be an abstract class. Sealed classes are primarily used to

prevent derivation. Because they can never be used as a base class,

some run-time optimizations can make calling sealed class

members slightly faster.

A class member, method, field, property, or event, on a derived

class that is overriding a virtual member of the base class can

declare that member as sealed. This negates the virtual aspect of the

member for any further derived class. This is accomplished by

putting the sealed keyword before the override keyword in the class

member declaration.

We can achieve polymorphic behavior by using several

techniques :

 Late binding

 Multiple interfaces(Early binding at compile time)

 .NET Reflection

 Inheritance

Chapter 4 Object oriented Programming
–––

 116

Using Polymorphism we can implement Overloading and

Overriding .

Overloading :
A class may override its own methods based on parameter lists.

Overloading which means the use of same thing for different

purposes.Using Polymorphism we can create as many functions we

want with one function name but with different argument list. The

function performs different operations based on the argument list in

the function call. The exact function to be invoked will be

determined by checking the type and number of arguments in the

functions.

Example :

It represents a class, Square, and its draw methods. The

implementation of the draw behavior differs based on the

information that is passed into the Draw method. This is a special

case of overriding called overloading.

Overriding :

Overriding is to override the base class implementation or

provide a new implementation in the derived class. We can

override members in the base class in VB.Net using the keyword

Overrides and in C# using the key word override. To override a

base class member in VB.Net it should be marked as Overridable

and in C# they should be marked with virtual.

Method signature of the overiddden methods should be same as

the base class methods.

Object-Oriented Programming
–––

 117

Shadowing :

 This is a VB.Net Concept by which you can provide a new

implementation for the base class member without overriding the

member. You can shadow a base class member in the derived

class by using the keyword "Shadows". The method

signature,access level and return type of the shadowed member

can be completely different than the base class member.

Hiding :

 This is a C# Concept by which you can provide a new

implementation for the base class member without overriding the

member. You can hide a base class member in the derived class

by using the keyword "new". The method signature,access level

and return type of the hidden member has to be same as the base

class member.

Differences Between Shadowing,Overriding & Hiding :

1) The access level , signature and the return type can only be

changed when you are shadowing with VB.NET. Hiding and

overriding demands the these parameters as same.

2) The difference lies when you call the derived class object with

a base class variable.In case of overriding although you assign a

derived class object to base class variable it will call the derived

class function. In case of shadowing or hiding the base class

function only will be called.

Chapter 4 Object oriented Programming
–––

 118

iii) Encapsulation
Encapsulation is the ability to hide the internal workings of an

object's behavior and its data. object should totally separate its

interface from its implementation. All the data and implementation

code for an object should be entirely hidden behind its interface.

encapsulation is the exposure of properties and methods of an

object while hiding the actual implementation from the outside

world. In other words, the object is treated as a black box—

developers who use the object should have no need to understand

how it actually works.

Example :

For instance, let's say you have a object named Car and this object

has a method (behavior) named start(). When you create an instance

of a car object and call its start() method you are not worried about

what happens to accomplish this, you just want to make sure the

state of the car is changed to 'running' afterwards. This kind of

behavior hiding is encapsulation and it makes programming much

easier. When you want your car object to be in a 'running' state,

instead of calling: fuel.on(), starter.on(), etc., you just call start().

This not only makes it easier to work with, but if the internal

workings of this start() method have to change, the results will be

the same.

Object-Oriented Programming
–––

 119

iv) Data Abstraction :

Abstraction refers to the act of representing essential features

without including the background details or explanations. Classes

use the concept of abstraction and are defined as a list of abstract

attributes.

Abstraction is the ability to generalize an object as a data type that

has a specific Set of characteristics and is able to perform a set of

actions.

Object-oriented languages provide abstraction via classes. Classes

define the properties and methods of an object type, but we

cannot use a class directly, instead, an object must be created from

a class—it must be instantiated.

For example, you can create an abstraction of a dog with

characteristics, such as color, height, and weight, and actions such

as run and bite. The characteristics are called properties, and the

actions are called methods.

El-dosuky on the left (hard at work); and abstraction of El-dosuky

on the right (an object icon)

Chapter 4 Object oriented Programming
–––

 120

Here is a detailed description of an employee .

Case study: Weather system description
A weather station is a package of software controlled instruments

which collects data, performs some data processing and transmits

this data for further processing. The instruments include air and

ground thermometers, an anemometer, a wind vane, a barometer

and a rain gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data, the

weather station processes and summarises the collected data. The

summarised data is transmitted to the mapping computer when a

request is received.

Object-Oriented Programming
–––

 121

1. Use cases

2.Weather station layers

Chapter 4 Object oriented Programming
–––

 122

3. Weather station subsystems

Object-Oriented Programming
–––

 123

4. Classes

5. Data collection sequence diagram

Chapter 4 Object oriented Programming
–––

 124

6. Weather station interface

interface WeatherStation {

public void WeatherStation () ;

public void startup () ;

public void startup (Instrument i) ;

public void shutdown () ;

public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;

public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

